
Name: _____

1. The acceleration of a particle is \boldsymbol{a} $t = \beta t \boldsymbol{\iota} - g \boldsymbol{\jmath}$. Where \boldsymbol{a} is acceleration in two dimensions, β and g are constants, t is time, and $\boldsymbol{\iota}$ and $\boldsymbol{\jmath}$ are unit vectors along the x- and y- axis. The particle starts at the origin (0,0), and has an initial velocity \boldsymbol{v} $0 = v_0 \boldsymbol{\iota} + \boldsymbol{\jmath}$. Find the position vector, \boldsymbol{r} $t = x t \boldsymbol{\iota} + y t \boldsymbol{\jmath}$. Remember, \boldsymbol{a} $t = \frac{d^2 \boldsymbol{r}(t)}{dt^2}$

2. Find the acceleration of each mass in this Atwood's machine.

